Quasi-likelihood regression models for Markov chains

نویسنده

  • Wolfgang Wefelmeyer
چکیده

We consider regression models in which covariates and responses jointly form a higher order Markov chain. A quasi-likelihood model speciies parametric models for the conditional means and variances of the responses given the past observations. A simple estimator for the parameter is the maximum quasi-likelihood estimator. We show that it does not use the information in the model for the conditional variances, and construct an eecient estimating function which involves estimators for the third and fourth centered conditional moments of the responses. In many applications one assumes that the innovations are not arbitrary martin-gale increments but independently and identically distributed. We determine how much additional information about the parameter such an assumption contains. To make the exposition more readable, we rst treat the case in which only the conditional mean is speciied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoregression , estimating functions , and optimality criteria

Abstract We consider d-order Markov chains satisfying a conditional constraint E(aθ(Xi−1, Xi) | Xi−1) = 0, where Xi−1 = (Xi−1, . . . , Xi−d). These comprise quasi-likelihood models and nonlinear and conditionally heteroscedastic autoregressive models with martingale innovations. Estimators for θ can be obtained from estimating equations ∑n i=1Wθ(Xi−1) aθ(Xi−1, Xi) = 0. We review different crite...

متن کامل

Eecient Estimation in Markov Chain Models: an Introduction

We outline the theory of eecient estimation for semiparametric Markov chain models, and illustrate in a number of simple cases how the theory can be used to determine lower bounds for the asymptotic variance of estimators and to construct eecient estimators. In particular, we consider estimation of stationary distributions of Markov chains, of autoregression parameters and innovation distributi...

متن کامل

Efficient estimators for alternating quasi-likelihood models

We consider time series described by Markov chains that alternate periodically between different transition distributions, with conditional constraints involving unknown parameters. We obtain variance bounds and characterize efficient estimators for these parameters. Efficient estimators can be obtained as solutions of randomly weighted martingale estimating equations. Our model includes altern...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

New Methods for Determining Quasi-Stationary Distributions for Markov Chains

we shall be concerned with the problem of determining quasi-stationary distributions for Markovian models directly from their transition rates Q. We shall present simple conditions for a p-invariant measure m for Q to be p-invariant for the transition function, so that if m is finite, it can be normalized to produce a quasi-stationary distribution. @ 2000 Elsevier Science Ltd. All rights reserv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007